Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.815
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731814

In this study, a rutabaga (Brassica napus ssp. napobrassica) donor parent FGRA106, which exhibited broad-spectrum resistance to 17 isolates representing 16 pathotypes of Plasmodiophora brassicae, was used in genetic crosses with the susceptible spring-type canola (B. napus ssp. napus) accession FG769. The F2 plants derived from a clubroot-resistant F1 plant were screened against three P. brassicae isolates representing pathotypes 3A, 3D, and 3H. Chi-square (χ2) goodness-of-fit tests indicated that the F2 plants inherited two major clubroot resistance genes from the CR donor FGRA106. The total RNA from plants resistant (R) and susceptible (S) to each pathotype were pooled and subjected to bulked segregant RNA-sequencing (BSR-Seq). The analysis of gene expression profiles identified 431, 67, and 98 differentially expressed genes (DEGs) between the R and S bulks. The variant calling method indicated a total of 12 (7 major + 5 minor) QTLs across seven chromosomes. The seven major QTLs included: BnaA5P3A.CRX1.1, BnaC1P3H.CRX1.2, and BnaC7P3A.CRX1.1 on chromosomes A05, C01, and C07, respectively; and BnaA8P3D.CRX1.1, BnaA8P3D.RCr91.2/BnaA8P3H.RCr91.2, BnaA8P3H.Crr11.3/BnaA8P3D.Crr11.3, and BnaA8P3D.qBrCR381.4 on chromosome A08. A total of 16 of the DEGs were located in the major QTL regions, 13 of which were on chromosome C07. The molecular data suggested that clubroot resistance in FGRA106 may be controlled by major and minor genes on both the A and C genomes, which are deployed in different combinations to confer resistance to the different isolates. This study provides valuable germplasm for the breeding of clubroot-resistant B. napus cultivars in Western Canada.


Brassica napus , Disease Resistance , Plant Breeding , Plant Diseases , Plasmodiophorida , Quantitative Trait Loci , Brassica napus/genetics , Brassica napus/parasitology , Disease Resistance/genetics , Plant Diseases/parasitology , Plant Diseases/genetics , Plasmodiophorida/physiology , Plasmodiophorida/pathogenicity , RNA-Seq , Chromosome Mapping , Gene Expression Regulation, Plant , Chromosomes, Plant/genetics
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731906

Roots are the hidden and most important part of plants. They serve as stabilizers and channels for uptaking water and nutrients and play a crucial role in the growth and development of plants. Here, two-dimensional image data were used to identify quantitative trait loci (QTL) controlling root traits in an interspecific mapping population derived from a cross between wild soybean 'PI366121' and cultivar 'Williams 82'. A total of 2830 single-nucleotide polymorphisms were used for genotyping, constructing genetic linkage maps, and analyzing QTLs. Forty-two QTLs were identified on twelve chromosomes, twelve of which were identified as major QTLs, with a phenotypic variation range of 36.12% to 39.11% and a logarithm of odds value range of 12.01 to 17.35. Two significant QTL regions for the average diameter, root volume, and link average diameter root traits were detected on chromosomes 3 and 13, and both wild and cultivated soybeans contributed positive alleles. Six candidate genes, Glyma.03G027500 (transketolase/glycoaldehyde transferase), Glyma.03G014500 (dehydrogenases), Glyma.13G341500 (leucine-rich repeat receptor-like protein kinase), Glyma.13G341400 (AGC kinase family protein), Glyma.13G331900 (60S ribosomal protein), and Glyma.13G333100 (aquaporin transporter) showed higher expression in root tissues based on publicly available transcriptome data. These results will help breeders improve soybean genetic components and enhance soybean root morphological traits using desirable alleles from wild soybeans.


Chromosome Mapping , Glycine max , Plant Roots , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Glycine max/genetics , Glycine max/anatomy & histology , Glycine max/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/anatomy & histology , Chromosome Mapping/methods , Phenotype , Chromosomes, Plant/genetics , Genetic Linkage , Genotype
3.
Sci Rep ; 14(1): 11010, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745019

The presence of incompatibility alleles in primary amphidiploids constitutes a reproductive barrier in newly synthesized wheat-rye hybrids. To overcome this barrier, the genome stabilization process includes large-scale chromosome rearrangements. In incompatible crosses resulting in fertile amphidiploids, the elimination of one of the incompatible alleles Eml-A1 or Eml-R1b can occur already in the somatic tissue of the wheat × rye hybrid embryo. We observed that the interaction of incompatible loci Eml-A1 of wheat and Eml-R1b of rye after overcoming embryo lethality leads to hybrid sterility in primary triticale. During subsequent seed reproductions (R1, R2 or R3) most of the chromosomes of A, B, D and R subgenomes undergo rearrangement or eliminations to increase the fertility of the amphidiploid by natural selection. Genotyping-by-sequencing (GBS) coverage analysis showed that improved fertility is associated with the elimination of entire and partial chromosomes carrying factors that either cause the disruption of plant development in hybrid plants or lead to the restoration of the euploid number of chromosomes (2n = 56) in the absence of one of the incompatible alleles. Highly fertile offspring obtained in compatible and incompatible crosses can be successfully adapted for the production of triticale pre-breeding stocks.


Chromosomes, Plant , Crosses, Genetic , Hybridization, Genetic , Secale , Triticum , Triticum/genetics , Secale/genetics , Chromosomes, Plant/genetics , Alleles , Genotyping Techniques
4.
BMC Genomics ; 25(1): 468, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745142

BACKGROUND: Plant-specific TIFY proteins are widely found in terrestrial plants and play important roles in plant adversity responses. Although the genome of loquat at the chromosome level has been published, studies on the TIFY family in loquat are lacking. Therefore, the EjTIFY gene family was bioinformatically analyzed by constructing a phylogenetic tree, chromosomal localization, gene structure, and adversity expression profiling in this study. RESULTS: Twenty-six EjTIFY genes were identified and categorized into four subfamilies (ZML, JAZ, PPD, and TIFY) based on their structural domains. Twenty-four EjTIFY genes were irregularly distributed on 11 of the 17 chromosomes, and the remaining two genes were distributed in fragments. We identified 15 covariate TIFY gene pairs in the loquat genome, 13 of which were involved in large-scale interchromosomal segmental duplication events, and two of which were involved in tandem duplication events. Many abiotic stress cis-elements were widely present in the promoter region. Analysis of the Ka/Ks ratio showed that the paralogous homologs of the EjTIFY family were mainly subjected to purifying selection. Analysis of the RNA-seq data revealed that a total of five differentially expressed genes (DEGs) were expressed in the shoots under gibberellin treatment, whereas only one gene was significantly differentially expressed in the leaves; under both low-temperature and high-temperature stresses, there were significantly differentially expressed genes, and the EjJAZ15 gene was significantly upregulated under both low- and high-temperature stress. RNA-seq and qRT-PCR expression analysis under salt stress conditions revealed that EjJAZ2, EjJAZ4, and EjJAZ9 responded to salt stress in loquat plants, which promoted resistance to salt stress through the JA pathway. The response model of the TIFY genes in the jasmonic acid pathway under salt stress in loquat was systematically summarized. CONCLUSIONS: These results provide a theoretical basis for exploring the characteristics and functions of additional EjTIFY genes in the future. This study also provides a theoretical basis for further research on breeding for salt stress resistance in loquat. RT-qPCR analysis revealed that the expression of one of the three EjTIFY genes increased and the expression of two decreased under salt stress conditions, suggesting that EjTIFY exhibited different expression patterns under salt stress conditions.


Eriobotrya , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Eriobotrya/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Genome, Plant , Chromosomes, Plant/genetics
5.
BMC Plant Biol ; 24(1): 391, 2024 May 13.
Article En | MEDLINE | ID: mdl-38735929

BACKGROUND: Unreduced gamete formation during meiosis plays a critical role in natural polyploidization. However, the unreduced gamete formation mechanisms in Triticum turgidum-Aegilops umbellulata triploid F1 hybrid crosses and the chromsome numbers and compostions in T. turgidum-Ae. umbellulata F2 still not known. RESULTS: In this study, 11 T.turgidum-Ae. umbellulata triploid F1 hybrid crosses were produced by distant hybridization. All of the triploid F1 hybrids had 21 chromosomes and two basic pathways of meiotic restitution, namely first-division restitution (FDR) and single-division meiosis (SDM). Only FDR was found in six of the 11 crosses, while both FDR and SDM occurred in the remaining five crosses. The chromosome numbers in the 127 selfed F2 seeds from the triploid F1 hybrid plants of 10 crosses (no F2 seeds for STU 16) varied from 35 to 43, and the proportions of euploid and aneuploid F2 plants were 49.61% and 50.39%, respectively. In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes. The chromosome loss of the U genome was the highest (26.77%) among the three genomes, followed by that of the B (22.83%) and A (11.81%) genomes, and the chromosome gain for the A, B, and U genomes was 3.94%, 3.94%, and 1.57%, respectively. Of the 21 chromosomes, 7U (16.54%), 5 A (3.94%), and 1B (9.45%) had the highest loss frequency among the U, A, and B genomes. In addition to chromosome loss, seven chromosomes, namely 1 A, 3 A, 5 A, 6 A, 1B, 1U, and 6U, were gained in the aneuploids. CONCLUSION: In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes, chromsomes, and crosses. In addition to variations in chromosome numbers, three types of chromosome translocations including 3UL·2AS, 6UL·1AL, and 4US·6AL were identified in the F2 plants. Furthermore, polymorphic fluorescence in situ hybridization karyotypes for all the U chromosomes were also identified in the F2 plants when compared with the Ae. umbellulata parents. These results provide useful information for our understanding the naturally occurred T. turgidum-Ae. umbellulata amphidiploids.


Aegilops , Chromosomal Instability , Chromosomes, Plant , Hybridization, Genetic , Triticum , Triticum/genetics , Chromosomes, Plant/genetics , Aegilops/genetics , Meiosis/genetics , Triploidy , Polyploidy , Genome, Plant
6.
BMC Genomics ; 25(1): 465, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741087

BACKGROUND: The early 2 factor (E2F) family is characterized as a kind of transcription factor that plays an important role in cell division, DNA damage repair, and cell size regulation. However, its stress response has not been well revealed. RESULTS: In this study, ZmE2F members were comprehensively identified in the maize genome, and 21 ZmE2F genes were identified, including eight E2F subclade members, seven DEL subfamily genes, and six DP genes. All ZmE2F proteins possessed the DNA-binding domain (DBD) characterized by conserved motif 1 with the RRIYD sequence. The ZmE2F genes were unevenly distributed on eight maize chromosomes, showed diversity in gene structure, expanded by gene duplication, and contained abundant stress-responsive elements in their promoter regions. Subsequently, the ZmE2F6 gene was cloned and functionally verified in drought response. The results showed that the ZmE2F6 protein interacted with ZmPP2C26, localized in the nucleus, and responded to drought treatment. The overexpression of ZmE2F6 enhanced drought tolerance in transgenic Arabidopsis with longer root length, higher survival rate, and biomass by upregulating stress-related gene transcription. CONCLUSIONS: This study provides novel insights into a greater understanding and functional study of the E2F family in the stress response.


Droughts , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Plants, Genetically Modified , Arabidopsis/genetics , Promoter Regions, Genetic , Chromosomes, Plant/genetics
7.
Physiol Plant ; 176(3): e14332, 2024.
Article En | MEDLINE | ID: mdl-38710502

Plant cytochrome P450 (CYP) superfamily, the largest enzyme metabolism family, has been identified in many species and plays a vital role in plant development and stress response via secondary metabolite biosynthesis. A comprehensive identification and functional investigation of CYPs in tomato plants would contribute to deeper understanding of their biological significance. In this study, 268 tomato CYP genes were identified and found to be unevenly located on 12 chromosomes. Based on the phylogenetic analysis, these 268 SlCYPs were classed into two distinct clades (A-type and non-A-type) and nine clans, including 48 families. Moreover, 67 tandem and 22 WGD (whole genome duplication)/segmental duplication events were detected, of which 12 SlCYP genes experienced both WGD/segmental and tandem duplication events, indicating that tandem duplication plays a major role in the expansion of the SlCYP family. Besides, 48 pairs containing 41 SlCYP and 44 AtCYP genes were orthologous, while 216 orthologous pairs were obtained between tomato and potato. The expression level of all SlCYP genes in tomato tissues at different development stages was analyzed, and most expressed SlCYPs showed a tissue-specific pattern. Meanwhile, 143 differentially expressed SlCYPs were identified under cold stress. Furthermore, the RT-qPCR results indicated that SlCYPs may be involved in fruit ripening and cold tolerance in tomato seedlings. These findings provide valuable insights into the evolutionary relationships and functional characteristics of SlCYPs, which can be utilized for further investigation of fruit metabolic pathways and cold tolerance in tomato.


Cytochrome P-450 Enzyme System , Fruit , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/enzymology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Fruit/genetics , Fruit/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant/genetics , Cold-Shock Response/genetics , Gene Duplication , Chromosomes, Plant/genetics , Cold Temperature
8.
Theor Appl Genet ; 137(6): 126, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727833

KEY MESSAGE: The gene controlling pink flesh in watermelon was finely mapped to a 55.26-kb region on chromosome 6. The prime candidate gene, Cla97C06G122120 (ClPPR5), was identified through forward genetics. Carotenoids offer numerous health benefits; while, they cannot be synthesized by the human body. Watermelon stands out as one of the richest sources of carotenoids. In this study, genetic generations derived from parental lines W15-059 (red flesh) and JQ13-3 (pink flesh) revealed the presence of the recessive gene Clpf responsible for the pink flesh (pf) trait in watermelon. Comparative analysis of pigment components and microstructure indicated that the disparity in flesh color between the parental lines primarily stemmed from variations in lycopene content, as well as differences in chromoplast number and size. Subsequent bulk segregant analysis (BSA-seq) and genetic mapping successfully narrowed down the Clpf locus to a 55.26-kb region on chromosome 6, harboring two candidate genes. Through sequence comparison and gene expression analysis, Cla97C06G122120 (annotated as a pentatricopeptide repeat, PPR) was predicted as the prime candidate gene related to pink flesh trait. To further investigate the role of the PPR gene, its homologous gene in tomato was silenced using a virus-induced system. The resulting silenced fruit lines displayed diminished carotenoid accumulation compared with the wild-type, indicating the potential regulatory function of the PPR gene in pigment accumulation. This study significantly contributes to our understanding of the forward genetics underlying watermelon flesh traits, particularly in relation to carotenoid accumulation. The findings lay essential groundwork for elucidating mechanisms governing pigment synthesis and deposition in watermelon flesh, thereby providing valuable insights for future breeding strategies aimed at enhancing fruit quality and nutritional value.


Chromosome Mapping , Citrullus , Fruit , Phenotype , Pigmentation , Plant Proteins , Citrullus/genetics , Citrullus/metabolism , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Genes, Plant , Carotenoids/metabolism , Genes, Recessive , Gene Expression Regulation, Plant , Chromosomes, Plant/genetics , Lycopene/metabolism
9.
BMC Genomics ; 25(1): 434, 2024 May 02.
Article En | MEDLINE | ID: mdl-38693497

BACKGROUND: WOX genes are a class of plant-specific transcription factors. The WUSCHEL-related homeobox (WOX) family is a member of the homeobox transcription factor superfamily. Previous studies have shown that WOX members play important roles in plant growth and development. However, studies of the WOX gene family in blueberry plants have not been reported. RESULTS: In order to understand the biological function of the WOX gene family in blueberries, bioinformatics were used methods to identify WOX gene family members in the blueberry genome, and analyzed the basic physical and chemical properties, gene structure, gene motifs, promoter cis-acting elements, chromosome location, evolutionary relationships, expression pattern of these family members and predicted their functions. Finally, 12 genes containing the WOX domain were identified and found to be distributed on eight chromosomes. Phylogenetic tree analysis showed that the blueberry WOX gene family had three major branches: ancient branch, middle branch, and WUS branch. Blueberry WOX gene family protein sequences differ in amino acid number, molecular weight, isoelectric point and hydrophobicity. Predictive analysis of promoter cis-acting elements showed that the promoters of the VdWOX genes contained abundant light response, hormone, and stress response elements. The VdWOX genes were induced to express in both stems and leaves in response to salt and drought stress. CONCLUSIONS: Our results provided comprehensive characteristics of the WOX gene family and important clues for further exploration of its role in the growth, development and resistance to various stress in blueberry plants.


Blueberry Plants , Phylogeny , Promoter Regions, Genetic , Blueberry Plants/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Chromosomes, Plant/genetics , Evolution, Molecular , Computational Biology/methods
10.
Theor Appl Genet ; 137(6): 119, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709271

KEY MESSAGE: A candidate gene TaSP1 related to spike shape was cloned, and the gene-specific marker was developed to efficiently track the superior haplotype in common wheat. Spike shape, an important factor that affects wheat grain yield, is mainly defined by spike length (SPL), spikelet number (SPN), and compactness. Zhoumai32 mutant 1160 (ZM1160), a mutant obtained from ethyl methane sulfonate (EMS) treatment of hexaploid wheat variety Zhoumai32, was used to identify and clone the candidate gene that conditioned the spike shape. Genetic analysis of an F2 population derived from a cross of ZM1160 and Bainong207 suggested that the compact spike shape in ZM1160 was controlled by a single recessive gene, and therefore, the mutated gene was designated as Tasp1. With polymorphic markers identified through bulked segregant analysis (BSA), the gene was mapped to a 2.65-cM interval flanked by markers YZU0852 and MIS46239 on chromosome 7D, corresponding to a 0.42-Mb physical interval of Chinese spring (CS) reference sequences (RefSeq v1.0). To fine map TaSP1, 15 and seven recombinants were, respectively, screened from 1599 and 1903 F3 plants derived from the heterozygous F2 plants. Finally, TaSP1 was delimited to a 21.9 Kb (4,870,562 to 4,892,493 bp) Xmis48123-Xmis48104 interval. Only one high-confidence gene TraesCS7D02G010200 was annotated in this region, which encodes an unknown protein with a putative vWA domain. Quantitative reverse transcription PCR (qRT-PCR) analysis showed that TraesCS7D02G010200 was mainly expressed in the spike. Haplotype analysis of 655 wheat cultivars using the candidate gene-specific marker Xg010200p2 identified a superior haplotype TaSP1b with longer spike and more spikelet number. TaSP1 is beneficial to the improvement in wheat spike shape.


Chromosome Mapping , Cloning, Molecular , Ethyl Methanesulfonate , Genes, Plant , Mutation , Phenotype , Triticum , Triticum/genetics , Triticum/growth & development , Chromosome Mapping/methods , Genetic Markers , Haplotypes , Chromosomes, Plant/genetics
11.
Theor Appl Genet ; 137(6): 121, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709317

KEY MESSAGE: This study precisely mapped and validated a quantitative trait locus (QTL) located on chromosome 4B for flag leaf angle in wheat. Flag leaf angle (FLANG) is closely related to crop architecture and yield. We previously identified the quantitative trait locus (QTL) QFLANG-4B for FLANG on chromosome 4B, located within a 14-cM interval flanked by the markers Xbarc20 and Xzyh357, using a mapping population of recombinant inbred lines (RILs) derived from a cross between Nongda3331 (ND3331) and Zang1817. In this study, we fine-mapped QFLANG-4B and validated its associated genetic effect. We developed a BC3F3 population using ND3331 as the recurrent parent through marker-assisted selection, as well as near-isogenic lines (NILs) by selfing BC3F3 plants carrying different heterozygous segments for the QFLANG-4B region. We obtained eight recombinant types for QFLANG-4B, narrowing its location down to a 5.3-Mb region. This region contained 76 predicted genes, 7 of which we considered to be likely candidate genes for QFLANG-4B. Marker and phenotypic analyses of individual plants from the secondary mapping populations and their progeny revealed that the FLANG of the ND3331 allele is significantly higher than that of the Zang1817 allele in multiple environments. These results not only provide a basis for the map-based cloning of QFLANG-4B, but also indicate that QFLANG-4B has great potential for marker-assisted selection in wheat breeding programs designed to improve plant architecture and yield.


Chromosome Mapping , Phenotype , Plant Leaves , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/anatomy & histology , Chromosome Mapping/methods , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/growth & development , Genetic Markers , Chromosomes, Plant/genetics , Plant Breeding , Genetic Linkage , Genes, Plant
12.
Mol Biol Rep ; 51(1): 626, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717621

BACKGROUND: Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases of rice leading to huge yield losses in Southeast Asia. The recessive resistance gene xa-45(t) from Oryza glaberrima IRGC102600B, mapped on rice chromosome 8, spans 80 Kb with 9 candidate genes on Nipponbare reference genome IRGSP-1.0. The xa-45(t) gene provides durable resistance against all the ten Xanthomonas pathotypes of Northern India, thus aiding in the expansion of recessive bacterial blight resistance gene pool. Punjab Rice PR127, carrying xa-45(t), was released for wider use in breeding programs. This study aims to precisely locate the target gene among the 9 candidates conferring resistance to bacterial blight disease. METHODS AND RESULTS: Sanger sequencing of all nine candidate genes revealed seven SNPs and an Indel between the susceptible parent Pusa 44 and the resistant introgression line IL274. The genotyping with polymorphic markers identified three recombinant breakpoints for LOC_Os08g42370, and LOC_Os08g42400, 15 recombinants for LOC_Os08g423420 and 26 for LOC_Os08g42440 out of 190 individuals. Relative expression analysis across six time intervals (0, 8, 24, 48, 72, and 96 h) after bacterial blight infection showed over expression of LOC_Os08g42410-specific transcripts in IL274 compared to Pusa 44, with a significant 4.46-fold increase observed at 72 h post-inoculation. CONCLUSIONS: The Indel marker at the locus LOC_Os08g42410 was found co-segregating with the phenotype, suggesting its candidacy towards xa-45(t). The transcript abundance assay provides strong evidence for the involvement of LOC_Os08g42410 in the resistance conferred by the bacterial blight gene xa-45(t).


Chromosome Mapping , Disease Resistance , Genes, Plant , Genes, Recessive , Oryza , Plant Diseases , Xanthomonas , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Oryza/genetics , Oryza/microbiology , Xanthomonas/pathogenicity , Chromosome Mapping/methods , Genes, Plant/genetics , Polymorphism, Single Nucleotide/genetics , Chromosomes, Plant/genetics , Genotype , Gene Expression Regulation, Plant/genetics
13.
Theor Appl Genet ; 137(5): 116, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698276

KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.


Aegilops , Basidiomycota , Chromosome Mapping , Disease Resistance , Gene Expression Profiling , Genes, Plant , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Basidiomycota/pathogenicity , Basidiomycota/physiology , Aegilops/genetics , Aegilops/microbiology , Plant Breeding , Transcriptome , Chromosomes, Plant/genetics , Puccinia/pathogenicity , Puccinia/physiology , Gene Expression Regulation, Plant
14.
Theor Appl Genet ; 137(5): 117, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700534

KEY MESSAGE: A large-effect QTL was fine mapped, which revealed 79 gene models, with 10 promising candidate genes, along with a novel inversion. In commercial maize breeding, doubled haploid (DH) technology is arguably the most efficient resource for rapidly developing novel, completely homozygous lines. However, the DH strategy, using in vivo haploid induction, currently requires the use of mutagenic agents which can be not only hazardous, but laborious. This study focuses on an alternative approach to develop DH lines-spontaneous haploid genome duplication (SHGD) via naturally restored haploid male fertility (HMF). Inbred lines A427 and Wf9, the former with high HMF and the latter with low HMF, were selected to fine-map a large-effect QTL associated with SHGD-qshgd1. SHGD alleles were derived from A427, with novel haploid recombinant groups having varying levels of the A427 chromosomal region recovered. The chromosomal region of interest is composed of 45 megabases (Mb) of genetic information on chromosome 5. Significant differences between haploid recombinant groups for HMF were identified, signaling the possibility of mapping the QTL more closely. Due to suppression of recombination from the proximity of the centromere, and a newly discovered inversion region, the associated QTL was only confined to a 25 Mb region, within which only a single recombinant was observed among ca. 9,000 BC1 individuals. Nevertheless, 79 gene models were identified within this 25 Mb region. Additionally, 10 promising candidate genes, based on RNA-seq data, are described for future evaluation, while the narrowed down genome region is accessible for straightforward introgression into elite germplasm by BC methods.


Chromosome Mapping , Haploidy , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Chromosome Mapping/methods , Plant Breeding , Genome, Plant , Phenotype , Alleles , Chromosomes, Plant/genetics , Genes, Plant
15.
BMC Genomics ; 25(1): 442, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702658

Genes containing the SET domain can catalyse histone lysine methylation, which in turn has the potential to cause changes to chromatin structure and regulation of the transcription of genes involved in diverse physiological and developmental processes. However, the functions of SET domain-containing (StSET) genes in potato still need to be studied. The objectives of our study can be summarized as in silico analysis to (i) identify StSET genes in the potato genome, (ii) systematically analyse gene structure, chromosomal distribution, gene duplication events, promoter sequences, and protein domains, (iii) perform phylogenetic analyses, (iv) compare the SET domain-containing genes of potato with other plant species with respect to protein domains and orthologous relationships, (v) analyse tissue-specific expression, and (vi) study the expression of StSET genes in response to drought and heat stresses. In this study, we identified 57 StSET genes in the potato genome, and the genes were physically mapped onto eleven chromosomes. The phylogenetic analysis grouped these StSET genes into six clades. We found that tandem duplication through sub-functionalisation has contributed only marginally to the expansion of the StSET gene family. The protein domain TDBD (PFAM ID: PF16135) was detected in StSET genes of potato while it was absent in all other previously studied species. This study described three pollen-specific StSET genes in the potato genome. Expression analysis of four StSET genes under heat and drought in three potato clones revealed that these genes might have non-overlapping roles under different abiotic stress conditions and durations. The present study provides a comprehensive analysis of StSET genes in potatoes, and it serves as a basis for further functional characterisation of StSET genes towards understanding their underpinning biological mechanisms in conferring stress tolerance.


Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Phylogeny , Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Chromosomes, Plant/genetics , Stress, Physiological/genetics , Gene Duplication , PR-SET Domains/genetics , Chromosome Mapping , Gene Expression Profiling , Droughts
16.
PeerJ ; 12: e17370, 2024.
Article En | MEDLINE | ID: mdl-38737737

Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.


Gene Expression Regulation, Plant , Plant Infertility , Triticum , Triticum/genetics , Plant Infertility/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant/genetics , Hot Temperature/adverse effects , Multigene Family , Chromosomes, Plant/genetics , Heat-Shock Response/genetics , Gene Expression Profiling
17.
J Genet ; 1032024.
Article En | MEDLINE | ID: mdl-38736249

Phenotypic mutants are valuable resources for elucidating the function of genes responsible for their expression. This study examined mutant rice strains expressing three traits: spotted leaf 6 (spl6), lax panicle (lax), and liguleless (lg). In the mutant, the spl6 phenotype was a genetically programmed lesion-mimicking mutation (LMM) that displayed spontaneously scattered spots across the leaf surface. In the lg trait, the plant lacked a collar region, and there were no auricles and ligules at the junction of the leaf blade and leaf sheath. The lax panicle trait manifested as sparely arranged spikelets resulting from the terminal spikelet with no lateral spikelets, which caused a drastic reduction of the total seed number in the mutant. All three mutant genes were genetically recessive and had nuclear gene regulation. The dihybrid segregation of the lg gene was classified independently according to the Mendelian 9:3:3:1 dihybrid segregation ratio in the F2 generation, suggesting that the lg gene is not linked to the same chromosome as the lax and spl6 genes. On the other hand, spl6 and lax were not assorted independently, indicating that they are closely linked on chromosome 1 in rice. Additional linkage analysis from the recombination of spl6 and lax genes reconfirmed that the two genes were ~9.4 cM away from each other. The individual single-gene mutant plant from one plant with a three-gene mutation (spl6, lax, and lg) was isolated and characterized, which will be a crucial resource for the gene cloning and molecular characterization of these genes.


Genes, Plant , Genetic Linkage , Mutation , Oryza , Phenotype , Oryza/genetics , Oryza/growth & development , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant
18.
Sci Data ; 11(1): 447, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702363

Cinnamomum chago is a tree species endemic to Yunnan province, China, with potential economic value, phylogenetic importance, and conservation priority. We assembled the genome of C. chago using multiple sequencing technologies, resulting in a high-quality, chromosomal-level genome with annotation information. The assembled genome size is approximately 1.06 Gb, with a contig N50 length of 92.10 Mb. About 99.92% of the assembled sequences could be anchored to 12 pseudo-chromosomes, with only one gap, and 63.73% of the assembled genome consists of repeat sequences. In total, 30,497 genes were recognized according to annotation, including 28,681 protein-coding genes. This high-quality chromosome-level assembly and annotation of C. chago will assist us in the conservation and utilization of this valuable resource, while also providing crucial data for studying the evolutionary relationships within the Cinnamomum genus, offering opportunities for further research and exploration of its diverse applications.


Cinnamomum , Genome, Plant , Cinnamomum/genetics , Chromosomes, Plant/genetics , China , Molecular Sequence Annotation , Endangered Species
19.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673847

Anthocyanins are ubiquitous pigments derived from the phenylpropanoid compound conferring red, purple and blue pigmentations to various organs of horticultural crops. The metabolism of flavonoids in the cytoplasm leads to the biosynthesis of anthocyanin, which is then conveyed to the vacuoles for storage by plant glutathione S-transferases (GST). Although GST is important for transporting anthocyanin in plants, its identification and characterization in eggplant (Solanum melongena L.) remains obscure. In this study, a total of 40 GST genes were obtained in the eggplant genome and classified into seven distinct chief groups based on the evolutionary relationship with Arabidopsis thaliana GST genes. The seven subgroups of eggplant GST genes (SmGST) comprise: dehydroascorbate reductase (DHAR), elongation factor 1Bγ (EF1Bγ), Zeta (Z), Theta(T), Phi(F), Tau(U) and tetra-chlorohydroquinone dehalogenase TCHQD. The 40 GST genes were unevenly distributed throughout the 10 eggplant chromosomes and were predominantly located in the cytoplasm. Structural gene analysis showed similarity in exons and introns within a GST subgroup. Six pairs of both tandem and segmental duplications have been identified, making them the primary factors contributing to the evolution of the SmGST. Light-related cis-regulatory elements were dominant, followed by stress-related and hormone-responsive elements. The syntenic analysis of orthologous genes indicated that eggplant, Arabidopsis and tomato (Solanum lycopersicum L.) counterpart genes seemed to be derived from a common ancestry. RNA-seq data analyses showed high expression of 13 SmGST genes with SmGSTF1 being glaringly upregulated on the peel of purple eggplant but showed no or low expression on eggplant varieties with green or white peel. Subsequently, SmGSTF1 had a strong positive correlation with anthocyanin content and with anthocyanin structural genes like SmUFGT (r = 0.9), SmANS (r = 0.85), SmF3H (r = 0.82) and SmCHI2 (r = 0.7). The suppression of SmGSTF1 through virus-induced gene silencing (VIGs) resulted in a decrease in anthocyanin on the infiltrated fruit surface. In a nutshell, results from this study established that SmGSTF1 has the potential of anthocyanin accumulation in eggplant peel and offers viable candidate genes for the improvement of purple eggplant. The comprehensive studies of the SmGST family genes provide the foundation for deciphering molecular investigations into the functional analysis of SmGST genes in eggplant.


Anthocyanins , Gene Expression Regulation, Plant , Glutathione Transferase , Solanum melongena , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Arabidopsis/genetics , Arabidopsis/metabolism , Chromosomes, Plant/genetics , Fruit/genetics , Fruit/metabolism , Genome, Plant , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum melongena/enzymology , Solanum melongena/genetics , Solanum melongena/metabolism
20.
Methods Mol Biol ; 2787: 169-181, 2024.
Article En | MEDLINE | ID: mdl-38656489

Genetic maps are an excellent tool for the analysis of important traits, the development of which is the result of the combined expression of several genes, enabling the genomic localization of the factors determining them. Such features, characterized by a normal distribution of values, are referred to as quantitative or polygenic. The analysis of their genetic background using a chromosome map is called the mapping of quantitative traits loci (QTL). QTL analysis is a statistical method of determining the genetic association of phenotypic data (trait measurements) with genotypic data (DNA markers assigned to linkage groups).There are numerous tools developed for QTL mapping. This chapter introduces Windows QTL Cartographer with Composite Interval Mapping (CIM) method, which estimates the QTL position by combining interval mapping with multiple regression. The genotypic and phenotypic data used in the exemplary QTL mapping procedure were obtained for the recombinant inbred line (RIL) population of rye. Plant height, assessed in three seasons, was the exemplary trait under study.


Chromosome Mapping , Phenotype , Quantitative Trait Loci , Chromosome Mapping/methods , Genotype , Genetic Linkage , Software , Inbreeding , Chromosomes, Plant/genetics
...